\qquad
\qquad
\qquad
\qquad

ATOMS and THE PERIODIC TABLE

Atomic \# = \qquad
Atomic Mass = \qquad
\# of Protons = \qquad
\# of Neutrons = \qquad
\# of Electrons = \qquad

Atomic \# = \qquad
Atomic Mass $=$ \qquad
\# of Protons = \qquad
\# of Neutrons = \qquad
\# of Electrons = \qquad

Atomic \# =
Atomic Mass $=$ \qquad $\#$ of Protons $=$
\# of Neutrons = \qquad \# of Electrons $=$

Atomic \# = \qquad
Atomic Mass = \qquad
\# of Protons = \qquad
\# of Neutrons = \qquad
\# of Electrons = \qquad

Atomic number equals the number of
or \qquad
Atomic mass equals the number of
\qquad

Atomic \# = \qquad
Atomic Mass = \qquad
\# of Protons = \qquad
\# of Neutrons = \qquad
\# of Electrons = \qquad

12
Mg
24.305

Atomic \# = \qquad Atomic Mass = \qquad

Atomic \# = \qquad
Atomic Mass = \qquad
\# of Protons =
\# of Neutrons = \qquad
\# of Electrons = \qquad

Atomic \# = \qquad
Atomic Mass $=$ \qquad
\# of Protons = \qquad
\# of Neutrons = \qquad
\# of Electrons = \qquad

Atomic \# = \qquad
Atomic Mass $=$ \qquad \# of Protons = \qquad \# of Neutrons = \qquad
\# of Electrons = \qquad

Atomic \# = \qquad
Atomic Mass = \qquad \# of Protons = \qquad \# of Neutrons = \qquad \# of Electrons = \qquad

Atomic \# = \qquad
Atomic Mass $=$ \qquad \# of Protons = \qquad \# of Neutrons = \qquad
\# of Electrons = \qquad

Noble gas, any of the seven chemical elements that make up Group 18 (VIIIa) of the periodic table. The elements are helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), radon (Rn), and oganesson (Og). The noble gases are colorless, odorless, tasteless, nonflammable gases.

Count and record the electrons in each of the separate electron shells around these Noble Gases.

\qquad

Compare class data. Do you notice any particular trends?
\qquad
\qquad

A Greek philosopher called Democritus, who lived over 2000 years ago, taught people that all things were made of grains which could not be divided. He called these grains atoms because in Greek atom means indivisible. Today, atom is the common name for the tiny particles of matter that cannot be further divided (and still be the same substance). If you could look inside an atom, you'd find that it looks like a miniature solar system, with something in the center and other things orbiting around it.
I. Label the parts of this atom (nucleus, protons, electrons, neutrons).

1. the part of the atom that carries no electric charge
2. the part of the atom that carries a positive charge
\qquad 3. the part of the atom that carries a negative charge
\qquad 4. the number of electrons that can be held in the first orbit (closest to the nucleus)
\qquad 5. the number of electrons that can be held in the second orbit
3. the number of electrons that can be held in the third orbit
\qquad 7. there are the same number of these two particles in an atom
4. the atomic number is the same as the number of these particles

First count the number of electrons and/or protons (darker dots) around each nucleus.
Second utilize a Periodic Table and correctly identify the atom by element. Write down Group Number in box too.
Note the number electron's in each shell.
What number is typically in the first electron shell? \qquad What is the exception? \qquad

Count the Valence Electrons in each shell. What do they correspond with? What does the Group number match?
\qquad

Atomic Structure

Use the information provided for each element to complete the diagrams. Draw the electrons in their proper shells, and place the correct numbers in the nucleus to indicate the number of protons and the number of neutrons.

1. Sulfur: atomic number 16 atomic mass 32

2. Sodium: atomic number 11 atomic mass $\quad 23$

3. Potassium: atomic number 19 atomic mass $\quad 39$

4. Nitrogen: atomic number 7 atomic mass 14
5. Argon: atomic number 18 atomic mass 40
.

Constructing Bohr Diagrams

Utilize the Atomic Number of each of the following to construct Bohr Diagrams of the following elements. Find Atomic \# on the bottom of each symbol. Recall the number electrons that are typically found in each shell $K, L, M, N-1^{\text {st }} 2^{\text {nd }}$ $3^{\text {rd }} 4^{\text {th }}(2,8,18,32)$ or $(2,8,8,18)$. Then sketch models with proper number of electron shells and electron counts.

1) 39

K
19
K
syl
2) 23
Na
11
5) 14
N
7
4) 9
Be
4
7) 28
Si
14
8) 4
He
2
9) 11 B 5
10) 20
Ne 10
8 dno．ig （dnoug 9 dnose
s dnoug f dno．f £ dnoug
z dno.s
I dno.ig

R3 ${ }^{\text {t }}$	บ1
${ }^{2} 0^{\text {² }}$	울
${ }^{8} \underline{E}$	号立
	E
${ }^{\text {8 }}$ 옥ㄴ	出哏
${ }^{\circ} \mathrm{B}$ ㅇㅜㅜ	¢
${ }^{3} \mathrm{P}$ 영	嗞 5
${ }^{2} 8{ }^{8}$	Es
${ }^{3}$ 3	c
${ }^{3}$	2
E	$\frac{2}{2}$
${ }^{9}$ 물ㄴ	
\％号	20
8	${ }^{\text {E }}$

Period 1
Period 2
Period 3
Period 4
Period 5
Period 6
Period 7

16
\mathbf{S}
Sulfur
32.06

$$
\begin{aligned}
\text { Atomic } \# & =\frac{16}{32.06} \\
\text { Atomic Mass } & =\frac{16}{\# \text { of Protons }}= \\
\# \text { of Neutrons } & =\frac{16}{16} \\
\# \text { of Electrons } & =1
\end{aligned}
$$

Atomic $\#=53$
Atomic Mass $=126.9$
\# of Protons $=\frac{53}{74}$
$\#$ of Neutrons $=\frac{53}{\# \text { of Electrons }}=4$.

Atomic \# $=18$

$$
\text { Atomic Mass }=39.9
$$

$$
\# \text { of Protons }=18
$$

$$
\# \text { of Neutrons }=22
$$

$$
\# \text { of Electrons }=18
$$

Atomic $\#=25$

$$
\begin{aligned}
\text { Atomic Mass } & =\frac{54,938}{25} \\
\# \text { of Protons } & =\frac{30}{} \\
\# \text { of Neutrons } & =30 \\
\# \text { of Electrons } & =25
\end{aligned}
$$

Atomic $\#=19$ Atomic Mass $=39.09$ $\#$ of Protons $=19$
\# of Neutrons $=20$ $\#$ of Electrons $=19$

$$
\begin{aligned}
\text { Atomic } \# & =\frac{9}{18.99} \\
\text { Atomic Mass } & =\frac{9}{9} \\
\# \text { of Protons } & =\frac{10}{9} \\
\# \text { of Neutrons } & =\frac{9}{2} \\
\# \text { of Electrons } & =9
\end{aligned}
$$

Noble gas, any of the seven chemical elements that make up Group 18 (VIII) of the periodic table. The elements are helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), radon (Rn), and oganesson (Og). The noble gases are colorless, odorless, tasteless, nonflammable gases.

Count and record the electrons in each of the separate electron shells around these Noble Gases.

Electron fill order for the $5^{\text {th }}$ Period on Periodic Table

Compare class data. Do you notice any particular trends?

Electron Levels (shells)

A Greek philosopher called Democritus, who lived over 2000 years ago, taught people that all things were made of grains which could not be divided. He called these grains atoms because in Greek atom means indivisible. Today, atom is the common name for the tiny particles of matter that cannot be further divided (and still be the same substance). If you could look inside an atom, you'd find that it looks like a miniature solar system, with something in the center and other things orbiting around it.
L. Label the parts of this atom (nucleus, protons, electrons, neutrons).
II. Answer these:

c. Proton
neutron

1. the part of the atom that carries no electric charge

proton
 electron

2. the part of the atom that carries a positive charge
3. the part of the atom that carries a negative charge

4. the number of electrons that can be held in the first orbit (closest to the nucleus)
eight
eighteen
$\underline{p+\xi e^{-}}$
proton
5. the number of electrons that can be held in the second orbit
6. the number of electrons that can be held in the third orbit
7. there are the same number of these two particles in an atom
8. the atomic number is the same as the number of these particles

Which Atom is it Investigation? Reviewing basic Bohr Model's of some common elements.
First count the number of electrons and/or protons (darker dots) around each nucleus.
Second utilize a Periodic Table and correctly identify the atom by element. Write down Group Number in box too.
Note the number electron's in each shell.
What number is typically in the first electron shell? \qquad 2

\square

Count the Valence Electrons in each shell. What do they correspond with? What does the Group number match?
\qquad

Atomic Structure

Use the information provided for each element to complete the diagrams. Draw the electrons in their proper shells, and place the correct numbers in the nucleus to indicate the number of protons and the number of neutrons.

1. Sulfur: atomic number 16 atomic mass $\quad 32$

2. Beryllium: atomic number 4 atomic mass 9

3. Nitrogen: atomic number 7 atomic mass 14

Family

4. Sodium: atomic number 11 atomic mass 23

5. Potassium: atomic number 19 atomic mass $\quad 39$

6. Argon: atomic number 18 atomic mass $\quad 40$ $2,8,8$

Constructing Bohr Diagrams
Utilize the Atomic Number of each of the following to construct Bohr Diagrams of the following elements. Find Atomic \# on the bottom of each symbol. Recall the number electrons that are typically found in each shell $K, L, M, N-1^{\text {st }} 2^{\text {nd }}$ $3^{\text {rd }} 4^{\text {th }}(2,8,18,32)$ or $(2,8,8,18)$. Then sketch models with proper number of electron shells and electron counts.

1) 39° Atomic Mass
$K^{<}$Consul
$19 \leftarrow$ Atomic \# $4^{\text {th }}$ period see krypton for

2) 9
$\mathrm{Be}<6 \operatorname{roup} 2$
$4 \leqslant H$ of electrons

3) 23

Na Group 1
11

5) 14
$N \leftarrow G \operatorname{seup} 5$ 7

3) 7
$\mathrm{Li}<$ Group 1
3

7) 28
$\mathrm{Si} \leftarrow G$ roup 4 14

10) 20
$\mathrm{Ne} \leftarrow$ Group 8 10
8) 4
$\mathrm{He} \leftarrow$ Group \&
2
Helium is an He o exception to rule like hydrogen
6) 16

8 dno.a
\angle dno.s
9 dnost
¢ dno.s
\dagger dno. 9
\& dnorg

z dno.s)
 I dno.ig

5온 ${ }^{\text {m }}$
935
정: Es
${ }^{3}$ 3 ${ }^{\text {¢ }}$
\%Ex ki
E\% ${ }_{\text {\% }}$
S920
${ }^{8} \mathrm{~S}=\mathrm{F}^{\circ} \mathrm{F}$

Period 1
Period 2
Period 3
Period 4
Period 5
Period 6
Period 7

